skip to main content


Search for: All records

Creators/Authors contains: "Vievard, Sebastien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report a search for excess absorption in the 1083.2 nm line of ortho (triplet) helium during transits of TOI-1807b and TOI-2076b, 1.25 and 2.5-R⊕ planets on 0.55- and 10.4-d orbits around nearby ∼200 Myr-old K dwarf stars. We limit the equivalent width of any transit-associated absorption to <4 and <8 mÅ, respectively. We limit the escape of solar-composition atmospheres from TOI-1807b and TOI-2076b to ≲1 and ≲0.1M⊕Gyr−1, respectively, depending on wind temperature. The absence of a H/He signature for TOI-1807b is consistent with a measurement of mass indicating a rocky body and the prediction by a hydrodynamic model that any H-dominated atmosphere would be unstable and already have been lost. Differential spectra obtained during the transit of TOI-2076b contain a He i-like feature, but this closely resembles the stellar line and extends beyond the transit interval. Until additional transits are observed, we suspect this to be the result of variation in the stellar He i line produced by rotation of active regions and/or flaring on the young, active host star. Non-detection of escape could mean that TOI-2076b is more massive than expected, the star is less EUV luminous, the models overestimate escape, or the planet has a H/He-poor atmosphere that is primarily molecules such as H2O. Photochemical models of planetary winds predict a semimajor axis at which triplet He i observations are most sensitive to mass-loss: TOI-2076b orbits near this optimum. Future surveys could use a distance criterion to increase the yield of detections.

     
    more » « less
  2. Abstract

    We present the direct imaging discovery of a low-mass companion to the nearby accelerating F star, HIP 5319, using SCExAO coupled with the CHARIS, VAMPIRES, and MEC instruments in addition to Keck/NIRC2 imaging. CHARISJHK(1.1–2.4μm) spectroscopic data combined with VAMPIRES 750 nm, MECY, and NIRC2Lpphotometry is best matched by an M3–M7 object with an effective temperature ofT= 3200 K and surface gravity log(g) = 5.5. Using the relative astrometry for HIP 5319 B from CHARIS and NIRC2, and absolute astrometry for the primary from Gaia and Hipparcos, and adopting a log-normal prior assumption for the companion mass, we measure a dynamical mass for HIP 5319 B of3111+35MJ, a semimajor axis of18.64.1+10au, an inclination of69.415+5.6degrees, and an eccentricity of0.420.29+0.39. However, using an alternate prior for our dynamical model yields a much higher mass of12888+127MJ. Using data taken with the LCOGT NRES instrument we also show that the primary HIP 5319 A is a single star in contrast to previous characterizations of the system as a spectroscopic binary. This work underscores the importance of assumed priors in dynamical models for companions detected with imaging and astrometry, and the need to have an updated inventory of system measurements.

     
    more » « less
  3. null (Ed.)